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THEORY OF TRANSIENT PERMEATION THROUGH
REACTIVE BARRIER FILMS II. TWO LAYER
REACTIVE-PASSIVE STRUCTURES WITH
DYNAMIC INTERFACE

Stanislav E. Solovyov
Anatoliy Ya. Goldman
Department of Materials and Processing, Alcoa Closure Systems
International, Inc., Crawfordsville, Indiana, USA

The theory of transient permeation through homogeneous and structures incorpor-
ating non�catalytic solute scavenger is developed in Part II. It is based on the
authors’ earlier analytical solutions for the steady state model of permeation
through passive films and reactive films with immobile catalytic scavenger dis-
persed within the layer. For consumable scavengers, the steady-unsteady solution
matching method is introduced to describe scavenger consumption dynamics as a
moving interface between reactive and passive layers of the film. The scavenger
exhaustion time equation is derived in the approximation of fast reaction but it
is shown to be also valid for intermediate reaction rates. The transient trans-
mission rate dependence on time, boundary conditions, reactivity and reactive
capacity of the scavenger, and layer sequence is derived. The terminology,
notation, and section numbering continue from Part I of this series [1].

Keywords: active barrier, oxygen scavenger, multilayer, transient transmission rate,
exhaustion time, layer sequence, moving interface, ingress, layer sequence

9. TWO PASSIVE LAYER LAMINATE (PP-FILM)

For completeness of the discussion of multilayer reactive structures the
known solution for two-layer passive-passive barrier film is reproduced.
The first layer (exposed to external partial pressure pin of the permeant
inside the package) has thicknessL1, diffusivityD1, solubilityS1, and the
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second layer has the respective L2, D2, S2. In steady state the fluxes J1

and J2 through both layers are the same, and the linear solution
(Eq. 6.2) for Eq. 6.1 described in Part I [1] holds for each respective layer.
Thus, using the expression in Eq. 6.3 for the flux we obtain

Jx ¼ J0 ¼ �D1

L1
ðC1 � CinÞ ¼ �D2

L2
ðCout � C2Þ ð9:1Þ

where C1 and C2 are solute concentrations on the respective sides of
layer 1 and layer 2 interface. Assuming instant equilibrium of the solute
at the interface partial pressures of the solute on both sides of the inter-
face are equal: p1 ¼ p2 can be written using Henry’s law:

C1

S1
¼ C2

S2
ð9:2Þ

Solving system Eqs. 9.1 and 9.2 for C1 and C2 we get

C1 ¼
1

S2
�
L1

D1
Cout þ L2

D2
Cin

L1

D1S1
þ L2

D2S2

ð9:3Þ

C2 ¼ S2

S1
C1 ð9:4Þ

and finally for the flux J0:

J0 ¼ Jx ¼ �
Cout

S2
� Cin

S1

L1

D1S1
þ L2

D2S2

¼ �Dp
1

TR1
þ 1

TR2

ð9:5Þ

The well-known result easily follows from Eq. 9.5 after applying the
definition in Eq. 4.5 for the effective transmission rate TReff

TReff ¼
1

1
TR1

þ 1
TR2

ð9:6Þ

This result can be routinely expanded to multilayer films with any
number of consecutive passive layers [2�3]:

TReff ¼
1

1
TR1

þ 1
TR2

þ � � � þ 1
TRN

ð9:7Þ

although for a heterogeneous structure only the transmission rate TReff

rather than the often reported effective permeability Peff has physical
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meaning [3] and should be used in Eq. 9.7 instead of the ratio Peff=Ltotal:

TReff ¼
1

L1

P1
þ L2

P2
þ � � � þ LN

PN

ð9:8Þ

It is noted that for passive barriers the effective transmission rate does
not depend on the sequence of layers, and the solute flux is the same
across any plane x ¼ const. Figure 1 presents some typical steady state
solute concentration profiles for 4 sets of PP-films described in Table 1.

FIGURE 1 Solute concentration profiles in PP-film. Cin ¼ 0.

TABLE 1 Dimensionless Parameter Settings for Figures 1�3. All Materials
Properties are Normalized to Scaling Set (5.1). L1 ¼ L2 ¼ 1

D1 S1 D2 S2

Set 1 1 1 1 1
Set 2 2 2 1 1
Set 3 1 1 2 2
Set 4 1 2 1 2
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10. TWO-LAYER FILM WITH THE REACTIVE LAYER EXPOSED
TO THE PACKAGE CONTENTS (RP-FILM)

Let’s consider a two-layer film where the first layer (exposed to pin) is
reactive (R) with corresponding thickness L1, diffusivity D1, solubility
S1, and reaction rate constant k1, and the second layer is passive (P)
with L2, D2, S2 (see Figure 2). Such a structure can be called an RP-
film. In this case there are four unknown parameters: C1 and C2 for
interfacial solute concentrations and coefficients b1; b2 for the reactive
layer. C1 and C2 denote steady state solute concentrations at the
reactive (1) and passive (2) side of the interface between two layers.
Using the solution in Eq. 3.2 for the reactive layer the relations on
the reaction layer boundaries can be written as:

Cin ¼ b1 þ b2 ð10:1Þ
C1 ¼ b1 expð/1Þ þ b2 expð�/1Þ ð10:2Þ

Here, /1 is Thiele modulus for the reactive layer:

/1 ¼ L1

ffiffiffiffiffiffi
k1
D1

s
ð10:3Þ

FIGURE 2 Solute concentration profiles in RP-film. Cin ¼ 0, R ¼ const.
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It is assumed that there is an established steady state at the reactive-
passive layer interface; then the partial pressures of the permeant on
both sides of the interface have to be the same:

p1 ¼ p2 ð10:4Þ

Utilizing Henry’s law on both sides of the interface as in Eq. 9.2, we
find from Eq. 10.4:

C1

S1
¼ C2

S2
ð10:5Þ

In addition to Eqs. 10.1, 10.2, and 10.5 one more relation between four
unknowns to close the system are needed. It follows from the obser-
vation that the solute flux across the interface should be the same
on both sides of the interface to avoid accumulation or depletion of
the solute within the interface. Equaling Eq. 6.3 for flux through pass-
ive barrier and Eq. 7.3 for the flux through active barrier at
x ¼ L1ðn ¼ 1 for the reactive layer), we write

D2

L2
ðCout � C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
k1D1

p
ðb1 expð/1Þ � b2 expð�/1ÞÞ ð10:6Þ

Eqs. 10.1, 2, 5, 6 form a system of linear equations with 4 unknowns.
For convenience they are rewritten in matrix form:

0 0 1 1

1 0 �c1 �1=c1

1 �d 0 0

0 1 c1e1f2 �e1f2=c1

2
66664

3
77775�

C1

C2

b1

b2

2
66664

3
77775 ¼

a

0

0

b

2
66664

3
77775 ð10:7Þ

where the known parameters are defined as follows:

a ¼ Cin

b ¼ Cout

c1 ¼ expð/1Þ

d ¼ S1

S2

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
k1D1

p
f2 ¼ L2

D2

ð10:8Þ
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The unique solution of the system in Eq. 10.7 can be found provided
the system is non-degenerate or its determinant d is not equal to zero.
That condition has a form:

d1 ¼ ðc21 þ 1Þðde1 f2 þ 1Þ � 2 6¼ 0 ð10:9Þ

When the condition d1 6¼ 0 is satisfied, the analytical solution of Eq.
10.7 is obtained as

C1 ¼
d

d1
ð2ac1e1f2 þ bðc21 � 1ÞÞ

C2 ¼
1

d1
ð2ac1e1f2 þ bðc21 � 1ÞÞ

b1 ¼ 1

d1
ðaðde1f2 � 1Þ þ bc1dÞ

b2 ¼ 1

d1
ðac21ðde1f2 þ 1Þ � bc1dÞ

ð10:10Þ

The effective flux J0 through the RP film is found using Eq. 7.4 for the
reactive layer:

J0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
k1D1

p
ðb1 � b2Þ ¼

�e1
d1

ða½ð1� c21Þde1f2 � ð1þ c21Þ� þ 2bc1dÞ

ð10:11Þ

Figure 2 demonstrates typical solute concentration profiles in RP films
with k1 ¼ 10 and L1 ¼ L2 ¼ 1 normalized according to Eq. 5.1 and
corresponding to Thiele modulus /1 ¼ 3.16.

11. TWO-LAYER FILM WITH THE REACTIVE LAYER EXPOSED
TO THE ENVIRONMENT (PR-FILM)

Let’s consider a PR-film where the first layer (exposed to pin) is passive
(P) with parameters L1, D1, S1, and the second layer is reactive (R)
with L2, D2, S2, k2 as shown in Figure 3. Utilizing the same procedure
as in the preceding section, we end up with the following system of
equations:

C2 ¼ b1 þ b2 ð11:1Þ
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Cout ¼ b1 expð/2Þ þ b2 expð�/2Þ ð11:2Þ

C1

S1
¼ C2

S2
ð11:3Þ

D1

L1
ðC1 � CinÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
k2D2

p
ðb1 � b2Þ ð11:4Þ

Here, /2 is Hatta number for the second (reactive) layer:

/2 ¼ L2

ffiffiffiffiffiffi
k2
D2

s
ð11:5Þ

In matrix form we get

0 �1 1 1

0 0 c2 1=c2

1 �d 0 0

1 0 �e2f1 e2f1

2
66664

3
77775�

C1

C2

b1

b2

2
66664

3
77775 ¼

0

b

0

a

2
66664

3
77775 ð11:6Þ

FIGURE 3 Solute concentration profiles in PR-film. Cin ¼ 0, R ¼ const.
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where the known parameters are defined as

a ¼ Cin

b ¼ Cout

c2 ¼ expð/2Þ

d ¼ S1

S2

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
k2D2

p
f1 ¼ L1

D1

ð11:7Þ

Non-degeneration condition for the system in Eq. 11.6 is

d2 ¼ 2d� ð1þ c22Þðdþ e2 f1Þ 6¼ 0 ð11:8Þ

Provided the condition d2 6¼ 0 is met, the unique solution of the system
in Eq. 11.6 is

C1 ¼
d

d2
ðað1� c22Þ � 2bc2e2f1Þ

C2 ¼
1

d2
ðað1� c22Þ � 2bc2e2f1Þ

b1 ¼ 1

d2
ða� bc2ðdþ e2f1ÞÞ

b2 ¼ 1

d2
ð�ac22 þ bc2ðd� e2f1ÞÞ

ð11:9Þ

The effective flux J0 through the PR-film can be found using Eq. 7.4
for the reactive layer, or Eq. 6.3 for the passive layer, because in
PR-film the flux at the exit of the reactive layer is equal to the flux
anywhere within the subsequent passive layers:

J0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
k2D2

p
ðb1 � b2Þ ¼ � e2

d2
ðað1þ c22Þ � 2bc2dÞ ð11:10Þ

Figure 3 demonstrates typical solute concentration profiles in PR-
films with k2 ¼ 10 and L1 ¼ L2 ¼ 1 normalized according to Eq. 5.1
with /2 ¼ 3.16.

12. SIMPLIFIED WAVEFRONT SOLUTION FOR SCAVENGER
CONSUMPTION

The steady state solutions for a reaction-diffusion system (Eqs. 2.1 and
2.2) were analyzed, assuming the scavenger is not consumed by the
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reaction. That is not the case in actual applications; moreover, Eq. 2.2
suggests that when there is a solute concentration gradient within the
reactive layer, the scavenger consumption rate will be higher where
the permeant concentration is higher. Assuming some pseudo steady
state concentration profile C�(x) in the reactive layer at a particular
time moment t ¼ t� and integrating Eq. 2.2 by t obtains an instan-
taneous snapshot of scavenger concentration profile around time t�

for fast reaction:

Rðx; t�Þ ¼ R0 expð�KC�ðxÞt�Þ ð12:1Þ

where R0 ¼ Rðx; 0Þ ¼ const is the initial concentration of active sites.
This attempt at decoupling the system of Eqs. 2.1 and 2.2 does not pro-
vide true solution because there is no steady state permeant concen-
tration profile at any time when the scavenger is consumed by the
reaction. However, it gives an idea how the scavenger concentration
profile would evolve in the presence of solute concentration gradients.
Figure 4 exemplifies the idea for several solute concentration profiles
C�ðxÞ from cases analyzed in Part I. Scavenger concentration profiles
in Figure 4 are shown for the initial Thiele modulus /0 of the reactive
layer and time t� pairs (/0, t

�) with two different times selected to illus-
trate scavenger consumption dynamics. It is observed that for inter-
mediate values of /0 there is no well-defined reaction wavefront and
the steady state is reached faster than for large /0 when the reaction

FIGURE 4 Scavenger concentration profiles in R-film. Cin ¼ 0, R 6¼ const.
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wavefront is narrow and moves slowly. Intermediate /0 values of the
order of 1 correspond to the joint activation and diffusion control of
the overall reaction rate and are of the most practical interest. For
/0 << 1 diffusion dominates and the overall reaction rate is activation
controlled. For /0 >> 1 the reaction is fast and the overall reaction rate
is diffusion controlled. The effect of the fast reaction depends on
whether the reaction is catalytic or non-catalytic. The catalytic reaction
does not consume the scavenger and quickly leads to establishment of
the steady state permeation pattern characterized by very small effec-
tive flux exiting the membrane. The non-catalytic reaction triggers
transient permeation process of heterogeneous scavenger capacity con-
sumption that can be extremely long.

It is noted that when the reaction is fast (/0>> 1) and the reaction
zone is narrow, an approximate analytical solution for the exhaustion
lag time was derived by Yang et al. [4] in terms of slowly moving reac-
tion wavefront, which effectively reduces the thickness of the layer with
active scavenger as it propagates consuming all available scavenger and
stoichiometric amount of the solute. All the reaction takes place within
the wavefront, but no reaction occurs before and after it, thus a delta-
function is assumed to be a solution for the scavenger concentration
at any time moment. The unsteady state mass balance for the scaven-
ger within the slowly moving front can be written then as

d

dt
ðAL�

dR0Þ ¼
AJf

l
ð12:2Þ

where Jf is the positive permeant flux into the front, A is the barrier
area, l ¼ C=R is the scavenger reactive capacity defined as the stoichio-
metric coefficient for the amount of the permeating species consumed by
the amount of the scavenger active sites in unit polymer volume
expressed in [m3 (STP) mol�1], and L�

d ¼ L�
dðtÞ is the front position mov-

ing downstream relative to the outer film boundary x ¼ L recorded
along the coordinate

x� ¼ L� x ð12:3Þ

with the initial condition

at x� ¼ 0: L�
dð0Þ ¼ 0 ð12:4Þ

Assuming Cin ¼ 0 and exact stoichiometry in the front (meaning all the
solute reaching the front is consumed by the scavenger:
Cf ¼ CðLdðtÞ; tÞ ¼ 0), Yang et al. obtained the following expression for
the flux Jf in x� coordinates:
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Jf ¼ �D
dC

dx�

����
x�¼L�

d

¼ �D

L�
d

ðCf � CoutÞ ¼
DCout

L�
d

ð12:5Þ

Combining Eqs. 12.2, 12.4, and 12.5 reproduces Yang et al.’s result:

L�
dðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DCoutt

lR0

s
ð12:6Þ

Then in the original coordinate system x the front position LdðtÞ is given
by

LdðtÞ ¼ L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DCoutt

lR0

s
ð12:7Þ

It is noted that this concept for estimating the reaction front velocity for
fast reaction can also be applied in the case Cin > 0: then it would
require the introduction of the opposite wavefront propagating
upstream from the inner boundary x ¼ 0:

LuðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DCint

lR0

s
ð12:8Þ

if the initial condition C(x,0) ¼ 0 for the solute free film is assumed.

13. REFERENCE LAG TIME

To analyze the reference lag time in a passive film (K ¼ 0):

@C

@t
¼ D

@2C

@x2
ð13:1Þ

the authors used initial conditions different from those originally
imposed in Eq. 2.9. In passive barriers the lag time refers to the inter-
cept of the asymptotic steady state flux across the film with the time
axis when initially the film is free of the permeating species. The
initial conditions for the permeant are then

0 � x � L: Cðx; 0Þ ¼ 0 ð13:2Þ

x < 0: pinðx; 0Þ ¼ 0 ð13:3Þ

x > L: poutðx; 0Þ ¼ pout ð13:4Þ
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and boundary conditions for t > 0:

x ¼ 0 Cð0; tÞ ¼ 0 ð13:5Þ

x ¼ L CðL; tÞ ¼ Spout ð13:6Þ

The reference lag time tL is defined for passive barriers. For monolayer
homogeneous material, the solution in terms of expansion series is
well known (Daynes [5], Barrer [6]):

Cðx; tÞ ¼Cin þðCout �CinÞ
x

L

þ2

p

X1
n¼1

Cout cosnp�Cin

n
sin

npx
L

expð�Dn2p2t=L2Þ

þ4C0

p

X1
m¼0

1

2mþ1
sin

ð2mþ 1Þpx
L

expð�Dð2mþ 1Þ2p2t=L2Þ ð13:7Þ

then using Fick’s first law (Eq. 4.1) we find the ingress I(t) as
the total amount of the solute passed through the film in time t as
t!1 :

IðtÞ ¼DCout

L
ðt� L2

6D
Þ ð13:8Þ

with the intercept with the time axis given by

tL ¼ L2

6D
ð13:9Þ

We shall use the term Daynes lag time to denote this purely diffus-
ive delay in establishing steady state permeation pattern after a sud-
den change in permeant pressure outside the film.

Siegel’s result [5] for the reactive film with the catalytic scavenger
R(x, t) ¼ const corresponding to / ¼ const, and Cin ¼ 0, which repro-
duced an earlier result by Leypolt and Gough [7], demonstrated that
the lag time to reach the asymptotic behavior is reduced as the reac-
tion rate k increases:

tL ¼ L2

6D

3ð/ coth/� 1Þ
/2

� �
ð13:10Þ
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That result (Eq. 13.9) is recovered from Eq. 13.10 for the passive bar-
rier case when k ¼ 0. The same result is expected for the consumable
scavenger if the characteristic time of diffusion through the film is
much shorter than time for a meaningful scavenger capacity
reduction. In that case tL characterizes the transition to reactive per-
meation rather than the asymptotic behaviour at t!1.

14. EXHAUSTION LAG TIME

In the case of reactive film with fast reaction and Cin ¼ 0, the exhaus-
tion lag time tLE during which the scavenger capacity is completely
exhausted by the reaction with the permeant is found from Eq. 12.6
by setting L�

dðtLEÞ ¼ L as

tLE ¼ L2

2D

lR0

Cout
ð14:1Þ

For Cin > 0 and C0 ¼ 0, tLE can be found as the time at which two
opposite wave fronts (Eqs. 12.7 and 12.8) propagating from the
opposite film boundaries collide:

LdðtLEÞ ¼ LuðtLEÞ ð14:2Þ

Then the lag time to front collision is found as

tLE ¼ L2

2D
� lR0

ðCout þ Cin þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CoutCin

p
Þ

ð14:3Þ

It is seen that for fast reaction the nonzero solute concentration Cin

inside the package can significantly reduce the lifetime of the scaven-
ger. Also, the lag time tLE with consumable scavenger Rðx; tÞ 6¼ const in
the considered simplified case does not depend on the reaction rate
constant k ðfor/0 >> 1Þ but only on the film scavenging capacity lR0

and the boundary conditions. On the other hand, the effective flux
J0 for such a system does depend on k at any position of the reaction
wavefront as shown by the result in Eq. 10.11 for RP-films and as sug-
gested by experimental data. The wavefront position in static RP-film
terms is defined as the position of the reactive-passive layer interface
at x ¼ L1. If the front is moving, then L1 ¼ L1ðtÞ and L2 ¼ L2ðtÞ, but
L1ðtÞ þ L2ðtÞ � L ¼ const. Note that in Eq. 10.11, the parameters
c1 ¼ exp(/1) and f2 ¼ L2=D2 explicitly depend on L1 and L2, respect-
ively. Thus, there is a necessity to develop a generalized solution for
propagating reaction wavefront and nonzero effective flux through
the film during its propagation.
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15. STEADY-UNSTEADY SOLUTION MATCHING FOR
PARTIALLY PERMEABLE REACTION WAVEFRONT

Simplified solutions in Eqs. 14.1 and 14.3 were obtained assuming the
permeant flux Jf that drives the wavefront is found according to
Eq. 12.5, that is, that Cf ¼ 0. That assumption results in zero effective
flux exiting the membrane during tLE, i.e., the scavenger exhaustion
time tE coincides with the steady state lag time tL

SS and it is called
the exhaustion lag time tLE. The relationship between the steady
state lag time tL

SS (defined for the initial conditions of steady state
flux across a passive membrane) and the reference lag time tL will
be discussed in Part III. Considering the permeant concentration pro-
files in Figure 2 it was observed that a more accurate solution may be
obtained if Cf ¼ C2 is used according to the analytical solution in Eq.
10.10. Because C2 > 0 for any wavefront position Ld(t) > 0, Eq. 12.5
leads to overestimating the scavenger exhaustion time also producing
zero transient transmission rates not observed experimentally when
reaction is not instantaneous (/ < 1). In fact, when / < 1 it is easy
to see from reaction kinetics equations that tE should be infinite since
the reaction with finite rate k will never completely exhaust the scav-
enger reactive capacity when Cin ¼ 0. That statement is only true
when concentration based reaction kinetic models are considered: in
actual systems with localized non-catalytic scavenging sites, their
capacity will be exhausted in a long but finite time. Considering that
the asymptotics of reaching the steady state permeation may be slow
but at longer times its effect on permeant ingress is negligible, a bet-
ter description of transient permeation during times on the tLE order
of magnitude is sought.

To improve the solution in Eq. 14.1 the steady-unsteady solution
matching (SUSM) method is introduced: if the reaction is fast so that
the transient Thiele modulus for the reactive layer Ld(t) with full scav-
enging capacity l and reactivity k:

/RðtÞ ¼ LdðtÞ
ffiffiffiffi
k

D

r
>> 1 ð15:1Þ

then a narrow reaction wavefront propagating downstream by deplet-
ing the scavenger concentration can be assumed. Assuming that the
wavefront moves slowly enough so that pseudo steady state of the
solute concentration adjusting to its movement is achieved throughout
the film, the approximate unsteady state mass balance (Eq. 12.2) for R
on the front holds, and the solution in Eqs. 10.9 and 10.10 for the solute
concentration in RP-film applies with the RP layer interface defining
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the wavefront position Ld(t). The net effect is that the narrow scavenger
concentration wavefront becomes partially permeable to the solute,
but the solute permeated ahead of the front does not consume the scav-
enger. This two zone approximation means splitting the continuous
scavenger concentration profile into completely reacted layer behind
the front and unreacted layer ahead of it where a small amount of
permeating solute does not significantly affect the scavenger reactive
capacity.

The feasibility of the partial permeability of the reaction front stems
from the fact that the scavenger is usually a particulate that forms a
physically separate phase from the polymer matrix, thus bulk reaction
equations valid for gases do not provide an adequate description of the
diffusing solute reaction with the dispersed scavenger. Some diffusing
solute is bound to miss localized scavenging sites and penetrate
beyond the narrow reaction zone even for very fast reactions. The
exact fraction of the solute permeating through the reaction front is
determined by the probability of solute molecule collision with the
scavenger particle during solute residence time in the front and the
activation energy of the reaction. That probability in turn depends
on the scavenger volume fraction, dispersion of the scavenger (i.e.,
its average particle size for the specific load), diffusivity of the matrix
and local permeant flux into the front. When the scavenger particle
size approaches the characteristic molecular dimensions of the matrix
polymer and the system approaches homogeneity, it is expected for the
solute fraction permeating through the reaction wavefront to be in
agreement with the catalytic reaction solution (7.4) for the effective
flux which exponentially goes to zero as Thiele modulus of the reactive
layer is increased.

Observing that the amount of the solute C penetrating through the
reaction front into the unreacted layer is small, it can be postulated that
the solute consumption rate lKRC with the scavenger is negligible:
lKRC � 0 for x < Ld(t), and it does not significantly affect the scavenger
concentration R ahead of the front. Then there is justification to match
the steady state solution in Eqs. 10.9 and 10.10 for renewable scavenger
with the impermeable wavefront Eq. (12.2). Substituting C2 from Eq.
10.10 into Eq. 12.5 we find the flux Jf into the front as

Jf ¼ �D
dC

dx�

����
x�¼L�

d

¼ DðCout � C2Þ
L�
d

¼ DCout

L�
d

� ðc21 þ 1Þe1f2
ðc21 þ 1Þe1f2 þ ðc21 � 1Þ

ð15:2Þ
Assuming that permeant diffusivity D and solubility S in the film
before and after the scavenging reaction are unchanged: D ¼ D1 ¼ D2,
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S ¼ S1 ¼ S2, that k� k1 is the only reaction rate constant in the
system, and keeping in mind the matching definitions

L1 ¼ LdðtÞ ¼ L� L�
dðtÞ ð15:3Þ

L2 ¼ L� LdðtÞ ¼ L�
dðtÞ ð15:4Þ

the two parameter complexes present in Eq. 15.2 can be defined as

Z � e1f2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
k1D1

p
� L2

D2
¼ L2

ffiffiffiffi
k

D

r
¼ L�

dðtÞ
ffiffiffiffi
k

D

r
ð15:5Þ

Y � c21 ¼ exp 2L1

ffiffiffiffiffiffi
k1
D1

s !
¼ exp 2ðL� L�

dðtÞÞ
ffiffiffiffi
k

D

r !
¼ expð2ð/0 � ZÞÞ

ð15:6Þ

Here /0 ¼ /R (0) is the initial Thiele modulus, which is a constant for
any particular reactive layer and scavenger load. Comparing the
relation of Eq. 15.5 to Eq. 15.1 it is noted that complex Z may be called
reciprocal Thiele modulus for the RP-film because it exhibits the syn-
ergetic effect of reaction in the active layer and diffusion in the passive
layer as the wavefront propagates. Using the definitions in Eqs. 15.5
and 15.6, Eq. 15.2 may be rewritten as

Jf ¼ Cout

ffiffiffiffiffiffiffi
kD

p
� expð2ð/0 �ZÞÞ þ 1

ðexpð2ð/0 �ZÞÞ þ 1Þ �Zþ expð2ð/0 �ZÞÞ � 1
ð15:7Þ

From Eq. 12.2 can be obtained

dL�
dðtÞ
dt

¼ Jf

lR0
ð15:8Þ

and then rewriting Eq. 15.8 using Eq. 15.5 and 15.7:

dZ

dt
¼ kCout

lR0
� ðexpð2ð/0 � ZÞÞ þ 1Þ
ðexpð2ð/0 � ZÞÞ þ 1Þ � Zþ expð2ð/0 � ZÞÞ � 1

ð15:9Þ

After taking into account the initial condition L
�

d (0) ¼ 0, that is, Z ¼ 0
at t ¼ 0, and using the definition in Eq. 15.3 and Eq. 15.6 to write

LdðtÞ � ð/0 � ZÞ
ffiffiffiffi
D

k

r
ð15:10Þ
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we find the analytical integral of Eq. 15.9 as

t ¼ lR0

kCout

Z2

2
� Zþ ln

1þ e2/0

1þ e2ð/0�ZÞ

� �� �

¼ lR0

Cout

ðL� LdÞ2

2D
� L� Ldffiffiffiffiffiffiffi

kD
p þ 1

k
ln

1þ expð2L
ffiffiffiffiffiffiffiffiffi
k=D

p
Þ

1þ expð2Ld

ffiffiffiffiffiffiffiffiffi
k=D

p
Þ

 !" #
ð15:11Þ

representing the time for the wavefront to reach the position Ld corre-
sponding to a particular value of Z. The value of the approximate sol-
ution, thereafter called the Solovyov-Goldman (SG) model represented
by Eqs. 10.9�11 and 15.11, is not only in predicting the scavenger
exhaustion times but also in describing the dynamics of wavefront
propagation and the corresponding transient transmission rates
through the reactive film. It is noted that Eq. 15.11 is reduced to
the Yang-Nuxoll-Cussler (YNC) model (Eq. 12.7) when k ! 1. As
Figure 5 demonstrates, the SG model provides a physically meaning-
ful approximate solution Ld(t) for the entire range of t ¼ [/. . .tþE]. Here
tþE is the scavenger capacity exhaustion time predicted by the SG
model. The results shown in Figure 5 correspond to a base case
(Eq. 5.1) with the respective k normalization. That makes the SG

FIGURE 5 Reaction wavefront position versus time predicted by SG model.
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model more attractive for the intermediate initial Ha values than the
YNC model, which is stated to be valid only for Ha > 100.

To summarize, the SUSM method allows us to overcome the earlier
unrealistic assumption that the moving reaction wavefront does not
allow any solute permeation through it, or in other words, that exact
stoichiometry of the solute consumed by the present amount of scaven-
ger is maintained in the front. The YNC simplified solution assumed
that the front movement is driven by complete scavenger exhaustion
in the reactive plane exposed to solute flux, and any solute penetration
beyond the front constitutes the front movement. The authors utilize
the partially permeable propagating wavefront concept to estimate
exhaustion times. However, the steady state solution defined by Eqs.
10.9�10 and instantly adjusting to slowly moving front is used to cal-
culate the effective flux through the film according to Eq. 10.11. Thus,
the SUSM method allows us to relax the exact stoichiometry assump-
tion in the front and to predict nonzero solute concentrations ahead of
the reactive zone by matching Eq. 6.2 and 3.2 with match conditions
(Eq. 10.9�10) providing a more realistic physical description of the
transient permeation process.

16. SCAVENGER EXHAUSTION TIME

The SG model provides a more accurate prediction of the wavefront
position versus time for intermediate values of k (in terms of initial
Thiele modulus /0. It is noted that the result in Eq. 15.11 does depend
on the reaction rate k, and also the result in Eq. 12.6 is recovered from
Eq. 15.11 for instantaneous reactions with k ¼ 1.

The scavenger exhaustion time tþE is found from Eq. 15.11 by setting
Z(tþE) ¼ /0, that is, Ld(t

þ
LE) ¼ 0:

tþE ¼ lR0

Cout

L2

2D
� Lffiffiffiffiffiffiffi

kD
p þ 1

k
ln

1þ expð2L
ffiffiffiffiffiffiffiffiffi
k=D

p
Þ

2

 !" #

¼ lR0

kCout

�
/2
0

2
� /0 þ ln

1þ e2/0

2

� ��

Figure 6 demonstrates the relationship between the SG model
approximation of the steady state lag time tL

þ, exhaustion time tE
þ

and exhaustion lag time tLE in terms of downstream concentration
growth dynamics for the scavenging reaction rates varying from zero
to infinity. Figure 7 presents the comparison of earlier results in
Eqs. 13.9, 13.10, and 14.1 and the solution in Eq. 16.1 for the exhaus-
tion time (note that the exhaustion lag time refers to the time of
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FIGURE 7 Lag time dependence on Thiele modulus / (Siegel), /0 (Yang and
SG models). Scavenger exhaustion time tE is shown for SG model.

FIGURE 6 Relationship between scavenger exhaustion and reference lag
times.
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complete depletion of the scavenger reactive capacity: the steady state
lag time tþL for R-film, defined in line with the reference lag time tL for
P-film as the time axis intercept with asymptote of the solute concen-
tration growth downstream, would be smaller than both tþE and tLE for
k < 1. This is a subject of the authors further work on optimal design
of reactive-passive membranes). The x-axis dimensionless variable /0

is used in Figure 7 for convenience to represent variation in the rate
constant k only, whereas parameters L and D are kept constant. All
lag times are normalized to Daynes’ lag time for P-film. The value of
YNC lag time is determined by the dimensionless reactive scavenging
capacity of the film material.

W ¼ lR0

Cout
ð16:2Þ

which was set at W ¼ 1 in Figure 7 for presentation clarity, resulting
in tLE ¼ 3tL according to Eqs. 13.9 and 16.1, but it can be a very large
number for novel scavenging systems. For example, for the R-film with
all normalized properties equal to 1 and under permeant pressure
gradient of 0.2 atmospheres the value W ¼ 50 is obtained.

It is noted that Siegel’s solution exhibits a pattern of dependence on
/0 that is fundamentally different from YNC and SG solutions. Of
course, Daynes’ solution with no reaction corresponds to a single point
at /0 ¼ 0, but it is represented in Figure 7 by a line for the clarity of
discussion. Similarly, the YNC solution is valid only at /0!1, and
it represents the lower limit of the exhaustion time, which coincides
with the steady state lag time for /0 ¼ 1. Daynes’ solution tL for P-
film and Siegel’s solution for R-film with unlimited scavenging
capacity l ¼ 1 represent the lag time during which the steady state
flux across the film is asymptotically established. These solutions con-
verge to tL at /0! 0 as expected, while at large values of /0 the refer-
ence lag time tL ! 0. Thus, the reaction with a scavenger of unlimited
capacity accelerates the time to reach the steady state, which itself is
characterized by a very low effective flux at the downstream boundary
when /0 is large. That flux is found according to Eq. 7.4 for R-film.
With the consumable scavenger there is no steady state flux across
the film until the scavenger capacity is completely exhausted, whereas
scavenger depletion is a kinetic process of a different nature compared
to pure diffusive transport in the initially solute�free membrane to
asymptotically reach the steady state. Because of that, the YNC sol-
ution, based on the narrow reaction wavefront assumption valid for
large /0, should not and does not converge to that of Daynes at zero
/0 (compare to the modification of Eq. 14.1 suggested by Cussler and
Yang [8]).
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Note that the scavenger exhaustion time tE
þ ¼ 2tLE at /0!0: this is

an artifact of the SUSM method replacing the infinite tE by a finite
value tE

þ. The SG solution obtained by using the SUSM method aims
to approximate the gap between the two solutions (/0 ¼ 0 and
/0 ¼ 1) by truncating the (infinite) time at which the asymptotic sys-
tem behavior is established. That approximation effectively widens
the reaction zone for the solute concentration C while keeping the infi-
nitely narrow (delta-function) reaction zone approximation for the
scavenger concentration R. The resulting approximation of the steady
state lag time tL

þ based on SG model for tE
þ is derived in Part III of the

series.
Figure 8 demonstrates typical dynamics of the permeance in terms

of effective flux J0(t), obtained from the result in Eq. 10.11 for RP-films
using tþE solution (Eq. 16.1) obtained by steady-unsteady solutionmatch-
ing method when Cin ¼ 0. For comparison, experimental data for the
transient transmission rate through the structurally identical reactive
films with arbitrary (unquantified) reactivities are presented in
Figure 9 to show the qualitative agreement of the authors’ theoretical
predictions with the experiment. The time t ¼ 0 in Figure 9 was selec-
ted as a time at which the scavenger was fully activated within the
reactive layer because the activation mechanism was not considered
in either of the presented models (activation dynamics is shown for
3 experiments as the permeance at t < 0). It is observed that the

FIGURE 8 Normalized permeance of R-film with propagating reaction
wavefront.
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exhaustion time dependence on the reaction rate seen in Figure 9 is
well reproduced by SG model in Figure 8 whereas the YNC model pre-
dictions for tLE are independent of the reaction rate.

SUMMARY

The physical meaning of the results presented in Part II is that the
scavenger capacity will be quickly exhausted in the areas exposed to
high solute influx from the environment and the package contents, if
the scavenging reaction rate is high as demonstrated by the result
in Eq. 16.1 for the exhaustion time. When the reaction rate is low
the barrier performance gain is negligible. Thus, the logical suggestion
is to eliminate the permeant from the package headspace and to insu-
late the reactive layer from the environmental permeant load by a
passive barrier layer in order to reduce the permeant concentration
seen by the scavenger. That would extend the useful life of the scaven-
ger by slowing down its consumption, or in film permeation terms:
that would increase the exhaustion time before steady state per-
meation pattern is established.

FIGURE 9 Experimental permeance data for R-film.
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Part III will formulate the transient solute ingress model, derive
the approximate steady state lag time for non-catalytic reactive mono-
layer, discuss experimental methods of determining scavenging reac-
tion rates and present comparative analysis of transient barrier
performance of reactive barriers as a function of scavenger reactivity,
matrix polymer properties and boundary conditions.
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